

Contents

	Overview
	Usage

	Locks as Context Managers

	Features

	Implementation

	Documentation

	Development

	Requirements

	Similar projects

	Installation

	Usage

	Reference
	redis_lock

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	4.0.0 (2022-10-17)

	3.7.0 (2020-11-20)

	3.6.0 (2020-07-23)

	3.5.0 (2020-01-13)

	3.4.0 (2019-12-06)

	3.3.1 (2019-01-19)

	3.3.0 (2019-01-17)

	3.2.0 (2016-10-29)

	3.1.0 (2016-04-16)

	3.0.0 (2016-01-16)

	2.3.0 (2015-09-27)

	2.2.0 (2015-08-19)

	2.1.0 (2015-03-12)

	2.0.0 (2014-12-29)

	1.0.0 (2014-12-23)

	0.1.2 (2013-11-05)

	0.1.1 (2013-10-26)

	0.1.0 (2013-10-26)

	0.0.1 (2013-10-25)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://python-redis-lock.readthedocs.io/]

	tests

	
[image: GitHub Actions Build Status] [https://github.com/ionelmc/python-redis-lock/actions] [image: Requirements Status] [https://requires.io/github/ionelmc/python-redis-lock/requirements/?branch=master]

[image: Coverage Status] [https://coveralls.io/r/ionelmc/python-redis-lock] [image: Coverage Status] [https://codecov.io/github/ionelmc/python-redis-lock]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/python-redis-lock] [image: PyPI Wheel] [https://pypi.org/project/python-redis-lock] [image: Supported versions] [https://pypi.org/project/python-redis-lock] [image: Supported implementations] [https://pypi.org/project/python-redis-lock]

[image: Commits since latest release] [https://github.com/ionelmc/python-redis-lock/compare/v4.0.0...master]

Lock context manager implemented via redis SETNX/BLPOP.

	Free software: BSD 2-Clause License

Interface targeted to be exactly like threading.Lock [https://docs.python.org/2/library/threading.html#threading.Lock].

Usage

Because we don’t want to require users to share the lock instance across processes you will have to give them names.

from redis import Redis
conn = Redis()

import redis_lock
lock = redis_lock.Lock(conn, "name-of-the-lock")
if lock.acquire(blocking=False):
 print("Got the lock.")
 lock.release()
else:
 print("Someone else has the lock.")

Locks as Context Managers

conn = StrictRedis()
with redis_lock.Lock(conn, "name-of-the-lock"):
 print("Got the lock. Doing some work ...")
 time.sleep(5)

You can also associate an identifier along with the lock so that it can be retrieved later by the same process, or by a
different one. This is useful in cases where the application needs to identify the lock owner (find out who currently
owns the lock).

import socket
host_id = "owned-by-%s" % socket.gethostname()
lock = redis_lock.Lock(conn, "name-of-the-lock", id=host_id)
if lock.acquire(blocking=False):
 assert lock.locked() is True
 print("Got the lock.")
 lock.release()
else:
 if lock.get_owner_id() == host_id:
 print("I already acquired this in another process.")
 else:
 print("The lock is held on another machine.")

Avoid dogpile effect in django

The dogpile is also known as the thundering herd effect or cache stampede. Here’s a pattern to avoid the problem
without serving stale data. The work will be performed a single time and every client will wait for the fresh data.

To use this you will need django-redis [https://github.com/jazzband/django-redis], however, python-redis-lock
provides you a cache backend that has a cache method for your convenience. Just install python-redis-lock like
this:

pip install "python-redis-lock[django]"

Now put something like this in your settings:

CACHES = {
 'default': {
 'BACKEND': 'redis_lock.django_cache.RedisCache',
 'LOCATION': 'redis://127.0.0.1:6379/1',
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient'
 }
 }
}

Note

If using a django-redis < 3.8.x, you’ll probably need redis_cache
which has been deprecated in favor to django_redis. The redis_cache
module is removed in django-redis versions > 3.9.x. See django-redis notes [https://github.com/jazzband/django-redis#configure-as-cache-backend].

This backend just adds a convenient .lock(name, expire=None) function to django-redis’s cache backend.

You would write your functions like this:

from django.core.cache import cache

def function():
 val = cache.get(key)
 if not val:
 with cache.lock(key):
 val = cache.get(key)
 if not val:
 # DO EXPENSIVE WORK
 val = ...
 cache.set(key, value)
 return val

Troubleshooting

In some cases, the lock remains in redis forever (like a server blackout / redis or application crash / an unhandled
exception). In such cases, the lock is not removed by restarting the application. One solution is to turn on the
auto_renewal parameter in combination with expire to set a time-out on the lock, but let Lock() automatically
keep resetting the expire time while your application code is executing:

Get a lock with a 60-second lifetime but keep renewing it automatically
to ensure the lock is held for as long as the Python process is running.
with redis_lock.Lock(conn, name='my-lock', expire=60, auto_renewal=True):
 # Do work....

Another solution is to use the reset_all() function when the application starts:

On application start/restart
import redis_lock
redis_lock.reset_all()

Alternatively, you can reset individual locks via the reset method.

Use these carefully, if you understand what you do.

Features

	based on the standard SETNX recipe

	optional expiry

	optional timeout

	optional lock renewal (use a low expire but keep the lock active)

	no spinloops at acquire

Implementation

redis_lock will use 2 keys for each lock named <name>:

	lock:<name> - a string value for the actual lock

	lock-signal:<name> - a list value for signaling the waiters when the lock is released

This is how it works:

[image: python-redis-lock flow diagram]

Documentation

https://python-redis-lock.readthedocs.io/en/latest/

Development

To run the all tests run:

tox

Requirements

	OS

	Any

	Runtime

	Python 2.7, 3.3 or later, or PyPy

	Services

	Redis 2.6.12 or later.

Similar projects

	bbangert/retools [https://github.com/bbangert/retools/blob/0.4/retools/lock.py] - acquire does spinloop

	distributing-locking-python-and-redis [https://chris-lamb.co.uk/posts/distributing-locking-python-and-redis] - acquire does polling

	cezarsa/redis_lock [https://github.com/cezarsa/redis_lock/blob/0.2.0/redis_lock/__init__.py] - acquire does not block

	andymccurdy/redis-py [https://github.com/andymccurdy/redis-py/blob/3.5.3/redis/lock.py] - acquire does spinloop

	mpessas/python-redis-lock [https://github.com/mpessas/python-redis-lock/blob/b512eef0fc5e1e2e82a6a31f65cd88c2c37dfe4b/redislock/lock.py] - blocks fine but no expiration

	brainix/pottery [https://github.com/brainix/pottery/blob/v1.1.5/pottery/redlock.py] - acquire does spinloop

Installation

At the command line:

pip install python-redis-lock

Usage

To use redis-lock in a project:

import redis_lock

Blocking lock:

conn = StrictRedis()
lock = redis_lock.Lock(conn, "name-of-the-lock"):
if lock.acquire():
 print("Got the lock. Doing some work ...")
 time.sleep(5)

Blocking lock with timeout:

conn = StrictRedis()
lock = redis_lock.Lock(conn, "name-of-the-lock"):
if lock.acquire(timeout=3):
 print("Got the lock. Doing some work ...")
 time.sleep(5)
else:
 print("Someone else has the lock.")

Non-blocking lock:

conn = StrictRedis()
lock = redis_lock.Lock(conn, "name-of-the-lock"):
if lock.acquire(blocking=False):
 print("Got the lock. Doing some work ...")
 time.sleep(5)
else:
 print("Someone else has the lock.")

Releasing previously acquired lock:

conn = StrictRedis()
lock = redis_lock.Lock(conn, "name-of-the-lock")
lock.acquire()
print("Got the lock. Doing some work ...")
time.sleep(5)
lock.release()

The above example could be rewritten using context manager:

conn = StrictRedis()
with redis_lock.Lock(conn, "name-of-the-lock"):
 print("Got the lock. Doing some work ...")
 time.sleep(5)

In cases, where lock not necessarily in acquired state, and
user need to ensure, that it has a matching id, example:

lock1 = Lock(conn, "foo")
lock1.acquire()
lock2 = Lock(conn, "foo", id=lock1.id)
lock2.release()

To check if lock with same name is already locked
(it can be this or another lock with identical names):

is_locked = Lock(conn, "lock-name").locked()

You can control the log output by modifying various loggers:

logging.getLogger("redis_lock.thread").disabled = True
logging.getLogger("redis_lock").disable(logging.DEBUG)

Reference

	redis_lock

redis_lock

	
exception redis_lock.AlreadyAcquired

	

	
exception redis_lock.AlreadyStarted

	

	
exception redis_lock.InvalidTimeout

	

	
class redis_lock.Lock(redis_client, name, expire=None, id=None, auto_renewal=False, strict=True, signal_expire=1000)

	A Lock context manager implemented via redis SETNX/BLPOP.

	
acquire(blocking=True, timeout=None)

	
	Parameters

	
	blocking – Boolean value specifying whether lock should be blocking or not.

	timeout – An integer value specifying the maximum number of seconds to block.

	
extend(expire=None)

	Extends expiration time of the lock.

	Parameters

	expire – New expiration time. If None - expire provided during
lock initialization will be taken.

	
locked()

	Return true if the lock is acquired.

Checks that lock with same name already exists. This method returns true, even if
lock have another id.

	
release()

	Releases the lock, that was acquired with the same object.

Note

If you want to release a lock that you acquired in a different place you have two choices:

	Use Lock("name", id=id_from_other_place).release()

	Use Lock("name").reset()

	
reset()

	Forcibly deletes the lock. Use this with care.

	
exception redis_lock.NotAcquired

	

	
exception redis_lock.NotExpirable

	

	
exception redis_lock.TimeoutNotUsable

	

	
exception redis_lock.TimeoutTooLarge

	

	
redis_lock.reset_all(redis_client)

	Forcibly deletes all locks if its remains (like a crash reason). Use this with care.

	Parameters

	redis_client – An instance of StrictRedis.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/ionelmc/python-redis-lock/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

redis-lock could always use more documentation, whether as part of the
official redis-lock docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/ionelmc/python-redis-lock/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-redis-lock for local development:

	Fork python-redis-lock [https://github.com/ionelmc/python-redis-lock]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/python-redis-lock.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox).

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

Authors

	Ionel Cristian Mărieș - https://blog.ionelmc.ro

	Rob Terhaar - https://github.com/robbyt

	Corey Farwell - http://rwell.org

	Andrey Kobyshev - https://github.com/yokotoka

	Jardel Weyrich - https://twitter.com/jweyrich

	Victor Torres - https://github.com/victor-torres

	Andrew Pashkin - https://github.com/AndreiPashkin

	Tero Vuotila - https://github.com/tvuotila

	Joel Höner - https://github.com/athre0z

	Julie MacDonell - https://github.com/juliemacdonell

	Julien Heller - https://github.com/flux627

	Przemysław Suliga - https://github.com/suligap

	Artem Slobodkin - https://github.com/artslob

	Salomon Smeke Cohen - https://github.com/SalomonSmeke

Changelog

4.0.0 (2022-10-17)

	Dropped support for Python 2.7 and 3.6.

	Switched from Travis to GitHub Actions.

	Made logging messages more consistent.

	Replaced the redis_lock.refresh.thread.* loggers with a single redis_lock.refresh.thread logger.

	Various testing cleanup (mainly removal of hardcoded tmp paths).

3.7.0 (2020-11-20)

	Made logger names more specific. Now can have granular filtering on these new logger names:

	redis_lock.acquire (emits DEBUG messages)

	redis_lock.acquire (emits WARN messages)

	redis_lock.acquire (emits INFO messages)

	redis_lock.refresh.thread.start (emits DEBUG messages)

	redis_lock.refresh.thread.exit (emits DEBUG messages)

	redis_lock.refresh.start (emits DEBUG messages)

	redis_lock.refresh.shutdown (emits DEBUG messages)

	redis_lock.refresh.exit (emits DEBUG messages)

	redis_lock.release (emits DEBUG messages)

Contributed by Salomon Smeke Cohen in PR #80 [https://github.com/ionelmc/python-redis-lock/pull/80].

	Fixed few CI issues regarding doc checks.
Contributed by Salomon Smeke Cohen in PR #81 [https://github.com/ionelmc/python-redis-lock/pull/81].

3.6.0 (2020-07-23)

	Improved timeout/expire validation so that:

	timeout and expire are converted to ``None if they are falsy. Previously only None disabled these options, other falsy
values created buggy situations.

	Using timeout greater than expire is now allowed, if auto_renewal is set to True. Previously a TimeoutTooLarge error
was raised.
See #74 [https://github.com/ionelmc/python-redis-lock/issues/74].

	Negative timeout or expire are disallowed. Previously such values were allowed, and created buggy situations.
See #73 [https://github.com/ionelmc/python-redis-lock/issues/73].

	Updated benchmark and examples.

	Removed the custom script caching code. Now the register_script method from the redis client is used.
This will fix possible issue with redis clusters in theory, as the redis client has some specific handling for that.

3.5.0 (2020-01-13)

	Added a locked method. Contributed by Artem Slobodkin in PR #72 [https://github.com/ionelmc/python-redis-lock/pull/72].

3.4.0 (2019-12-06)

	Fixed regression that can cause deadlocks or slowdowns in certain configurations.
See: #71 [https://github.com/ionelmc/python-redis-lock/issues/71].

3.3.1 (2019-01-19)

	Fixed failures when running python-redis-lock 3.3 alongside 3.2.
See: #64 [https://github.com/ionelmc/python-redis-lock/issues/64].

3.3.0 (2019-01-17)

	Fixed deprecated use of warnings API. Contributed by Julie MacDonell in
PR #54 [https://github.com/ionelmc/python-redis-lock/pull/54].

	Added auto_renewal option in RedisCache.lock (the Django cache backend wrapper). Contributed by c
in PR #55 [https://github.com/ionelmc/python-redis-lock/pull/55].

	Changed log level for “%(script)s not cached” from WARNING to INFO.

	Added support for using decode_responses=True. Lock keys are pure ascii now.

3.2.0 (2016-10-29)

	Changed the signal key cleanup operation do be done without any expires. This prevents lingering keys around for some time.
Contributed by Andrew Pashkin in PR #38 [https://github.com/ionelmc/python-redis-lock/pull/38].

	Allow locks with given id to acquire. Previously it assumed that if you specify the id then the lock was already
acquired. See #44 [https://github.com/ionelmc/python-redis-lock/issues/44] and
#39 [https://github.com/ionelmc/python-redis-lock/issues/39].

	Allow using other redis clients with a strict=False. Normally you’re expected to pass in an instance
of redis.StrictRedis.

	Added convenience method locked_get_or_set to Django cache backend.

3.1.0 (2016-04-16)

	Changed the auto renewal to automatically stop the renewal thread if lock gets garbage collected. Contributed by
Andrew Pashkin in PR #33 [https://github.com/ionelmc/python-redis-lock/pull/33].

3.0.0 (2016-01-16)

	Changed release so that it expires signal-keys immediately. Contributed by Andrew Pashkin in PR #28 [https://github.com/ionelmc/python-redis-lock/pull/28].

	Resetting locks (reset or reset_all) will release the lock. If there’s someone waiting on the reset lock now it will
acquire it. Contributed by Andrew Pashkin in PR #29 [https://github.com/ionelmc/python-redis-lock/pull/29].

	Added the extend method on Lock objects. Contributed by Andrew Pashkin in PR #24 [https://github.com/ionelmc/python-redis-lock/pull/24].

	Documentation improvements on release method. Contributed by Andrew Pashkin in PR #22 [https://github.com/ionelmc/python-redis-lock/pull/22].

	Fixed acquire(block=True) handling when expire option was used (it wasn’t blocking indefinitely). Contributed by
Tero Vuotila in PR #35 [https://github.com/ionelmc/python-redis-lock/pull/35].

	Changed release to check if lock was acquired with he same id. If not, NotAcquired will be raised.
Previously there was just a check if it was acquired with the same instance (self._held).
BACKWARDS INCOMPATIBLE

	Removed the force option from release - it wasn’t really necessary and it only encourages sloppy programming. See
#25 [https://github.com/ionelmc/python-redis-lock/issues/25].
BACKWARDS INCOMPATIBLE

	Dropped tests for Python 2.6. It may work but it is unsupported.

2.3.0 (2015-09-27)

	Added the timeout option. Contributed by Victor Torres in PR #20 [https://github.com/ionelmc/python-redis-lock/pull/20].

2.2.0 (2015-08-19)

	Added the auto_renewal option. Contributed by Nick Groenen in PR #18 [https://github.com/ionelmc/python-redis-lock/pull/18].

2.1.0 (2015-03-12)

	New specific exception classes: AlreadyAcquired and NotAcquired.

	Slightly improved efficiency when non-waiting acquires are used.

2.0.0 (2014-12-29)

	Rename Lock.token to Lock.id. Now only allowed to be set via constructor. Contributed by Jardel Weyrich in PR #11 [https://github.com/ionelmc/python-redis-lock/pull/11].

1.0.0 (2014-12-23)

	Fix Django integration. (reported by Jardel Weyrich)

	Reorganize tests to use py.test.

	Add test for Django integration.

	Add reset_all functionality. Contributed by Yokotoka in PR #7 [https://github.com/ionelmc/python-redis-lock/pull/7].

	Add Lock.reset functionality.

	Expose the Lock.token attribute.

0.1.2 (2013-11-05)

	?

0.1.1 (2013-10-26)

	?

0.1.0 (2013-10-26)

	?

0.0.1 (2013-10-25)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 redis_lock	

Index

 A
 | E
 | I
 | L
 | N
 | R
 | T

A

 	
 	acquire() (redis_lock.Lock method)

 	
 	AlreadyAcquired

 	AlreadyStarted

E

 	
 	extend() (redis_lock.Lock method)

I

 	
 	InvalidTimeout

L

 	
 	Lock (class in redis_lock)

 	
 	locked() (redis_lock.Lock method)

N

 	
 	NotAcquired

 	
 	NotExpirable

R

 	
 	redis_lock (module)

 	release() (redis_lock.Lock method)

 	
 	reset() (redis_lock.Lock method)

 	reset_all() (in module redis_lock)

T

 	
 	TimeoutNotUsable

 	
 	TimeoutTooLarge

 _static/plus.png

_images/ee3cea6631244c0dd5da624cc7519fa8bc5aef0c.png
v
(BLPOP)

returns

SET NX
success

WORK.

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Usage

 		
 Locks as Context Managers

 		
 Avoid dogpile effect in django

 		
 Troubleshooting

 		
 Features

 		
 Implementation

 		
 Documentation

 		
 Development

 		
 Requirements

 		
 Similar projects

 		
 Installation

 		
 Usage

 		
 Reference

 		
 redis_lock

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 4.0.0 (2022-10-17)

 		
 3.7.0 (2020-11-20)

 		
 3.6.0 (2020-07-23)

 		
 3.5.0 (2020-01-13)

 		
 3.4.0 (2019-12-06)

 		
 3.3.1 (2019-01-19)

 		
 3.3.0 (2019-01-17)

 		
 3.2.0 (2016-10-29)

 		
 3.1.0 (2016-04-16)

 		
 3.0.0 (2016-01-16)

 		
 2.3.0 (2015-09-27)

 		
 2.2.0 (2015-08-19)

 		
 2.1.0 (2015-03-12)

 		
 2.0.0 (2014-12-29)

 		
 1.0.0 (2014-12-23)

 		
 0.1.2 (2013-11-05)

 		
 0.1.1 (2013-10-26)

 		
 0.1.0 (2013-10-26)

 		
 0.0.1 (2013-10-25)

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

